Matematické modely biologických společenstev
Téma již má řešitele.- Řešitel
- Anna Novotná - Gymnázium Brno, Slovanské náměstí, příspěvková organizace
- Instituce
- Mendelova univerzita v Brně
- Další údaje o pracovišti
- Ústav matematiky, Lesnická a dřevařská fakulta
- Lektoři
- Robert Mařík
- Podpora
- JCMM podpořila toto SOČ téma částkou 0 Kč na materiál a částkou 10 000 Kč na honorář školitele.
Matematické modelování je důležitým nástrojem pro pochopení struktury ekosystémů a vnitřních vazeb v těchto systémech, k posouzení dynamiky vývoje a posouzení stability v měnícím se prostředí. Cílem práce je seznámit se s metodami modelování ekosystémů pomocí diferenciálních rovnic (J.D. Murray, Mathematical biology) a uplatnit je na vybraný systém studovaný v literatuře. Může jít například o F. Courchamp, Cats protecting birds: modelling the mesopredator release effect (2001) nebo V. Křivan, A dynamical model for bark beetle outbreaks (2019) či jiný vhodný výchozí model dle výběru studenta. Výsledkem práce bude rozšíření dříve publikovaných výsledků o tomto modelu buď směrem k matematickému zjednodušení při zachování biologické relevance, či směrem k větší biologické přesnosti modelu. Práce bude rozdělena na část, ve které bude popsána metodika studia biologických společenstev pomocí diferenciálních rovnic a na část věnovanou analýze vybraného modelu. Řešení modelu bude provedeno numerickými metodami za použití knihovny SciPy nebo její vhodné alternativy.